Taking the fight into the enemy's territory
German researchers have developed a scheme for the preparation of nanoparticles that offer a highly versatile system for targeted drug delivery directly into diverse types of tumor cells.
Credit: ACS
Read more at: http://phys.org
Nanoparticles have dimensions of a few millionths of a millimeter, and are thus small enough to conquer cells. This property opens new opportunities in the fight against cancer, which are currently the subject of intensive research. An LMU team led by Professor Christoph Bräuchle and Professor Thomas Bein has now developed a highly adaptable platform for the production of nanoparticles that can be used as "nanoferries" for the targeted delivery of a range of drug cargoes to various types of cancer cells. The system is described in a paper that has just appeared in the journal Nano Letters.
Above all, the new approach makes it possible to fabricate custom-designed nanoparticles for particular tasks. "The particles can be easily loaded with a variety of chemical agents and equipped with labels recognized by specific cell types. Thus, they bind specifically to certain cancer cells and release their cargo only after uptake by the cell," says Christoph Bräuchle who, like his collaborator Thomas Bein, is a member of the Nanosystems Initiative Munich (NIM), a Cluster of Excellence. The system thus provides a means of transporting anti-cancer drugs directly and specifically into tumor cells.
The use of such nanoparticles as delivery vehicles ensures that their cargo exerts its effect only inside the targeted cells. The compounds used in cancer chemotherapy are often highly toxic to many cell types, so targeting is crucial if one wants to minimize collateral damage to healthy bystander cells. Efficient targeting thus significantly lowers the risk of serious side-effects, while allowing the dose required for a meaningful clinical response to be reduced.
Read more at: http://phys.org
No comments:
Post a Comment